
APR4Vul: An Empirical Study of 
Automatic Program Repair Techniques on 
Real-world Java Vulnerabilities

Quang-Cuong (Cuong) Bui 1 Ranindya Paramitha 2 Duc-Ly Vu 3 Fabio Massacci 2,4 Riccardo Scandariato 1

ICSE’24 - 17th April, 2024
Lisbon, Portugal

1 Institute of Software Security, Hamburg University of Technology, Germany
2 University of Trento, Italy
3 University of Information Technology, Ho Chi Minh City, Vietnam
4 Vrije Universiteit Amsterdam, Netherlands



Automatic Vulnerability Repair (AVR)
is still underexplored
• Idea: Explore the wealth of 

Automatic Program Repair (APR) 
to fix security bugs

• This work comes as a foundation study
– Evaluate performance of traditional APRs 

on repairing vulnerabilities in the Vul4J dataset1

– Analyze the differences between vulnerability patches (ExtraVul) 
and bug patches (Defects4J)

2

1Bui et al. Vul4J: A Dataset of Reproducible Java Vulnerabilities 
Geared Towards the Study of Program Repair Techniques. MSR’22.

< 7% 
security-focused



Methodological challenges

• Issues with built-in test executors 
of APR tools on real-world projects
– Customized Maven/Gradle cmds
– Feed exact vulnerable locations

• Assessment of both the security and
functional correctness of the patches
– Carried out by three researchers 

with cross-validation

3

(Automated) Generated patches

(Automated) End-to-End tested patches

(Manual) Security-fixing patches

(Manual) Correct
patches

Eliminate vulnerability &
Maintain functionalities

Pass all the 
project tests

Eliminate
vulnerability 



Tools’ performance

• Generate E2E tested patches for 
only 20% of vulnerabilities in Vul4J

• Best performers: ARJA, RSRepair-A, 
TBar

• On average, if an APR tool manages 
to generate ten E2E tested patches:
– three are useless
– three eliminate vulnerability yet 

break functionalities
– only four can be used as-is 

4



5

Repair actions

More often
in vulnerability patches

Explain: APRs adding code
hit more correct patches
e.g., ARJA, RSRepair



Repair patterns

6

Group Repair Patterns

Infinite Loop Handling - Add break/continue/throw to exit loop
- Update loop header

Secure Object Instantiation - Use secure constructor, e.g., SecureRandom
- Avoid deserialization of vulnerable class

User’s Permission 
Management

- Add MC to check permission of executing user
- Add MC to restrict user’s permission

Secure Configuration - Add MC to enable/disable secure/insecure features of 
XML parsers

External Input Validating 
and Handling

- Add MC to sanitize input
- Add If-condition + throw/return to reject invalid 
input/state
- Update Regular Expression for validating input
- Add ‘/’ to system path or URI path to prevent Path 
Traversal

Others - Remove code to avoid sensitive data/API exposure
- Move code

Most of the repair patterns do 
not exist in general bug patches

Most frequently used repair 
patterns

Fix ~34% of the vulnerabilities 
in the dataset

MC = Method Call 



Key takeaways

• Traditional APR tools have poor performance in 
fixing vulnerabilities → do not use them as-is

• New repair patterns enable the ability to fix 
vulnerabilities → improve the APR tools

7

/tuhh-softsec/APR4Vul

Published in the Journal of
Empirical Software Engineering


