@ J Isn;f?wc:?eogecurity TU H H J

APR4Vul: An Empirical Study of
Automatic Program Repair Techniques on
Real-world Java Vulnerabilities

* o @ 0 &

Quang-Cuong (Cuong) Bui! Ranindya Paramitha? Duc-Ly Vu3 Fabio Massacci #* Riccardo Scandariato?

YInstitute of Software Security, Hamburg University of Technology, Germany cg SEIC
¥\ L}
I .
University of Trento, Italy Assurell0SS SEC
3 University of Information Technology, Ho Chi Minh City, Vietnam
4 Vrije Universiteit Amsterdam, Netherlands — — T~
11 fnjin 1 a0 11
. (LI I RN
BigE ICSE’24 - 17th April, 2024 "| RN AL LR (NN |"
&1 1 PG o0t el giRiiiiniiiin "

Lisbon, Portugal oo TN o BT

@J ISnosftti\fyc:(raeosfecurity TUHH J 2

Automatic Vulnerability Repair (AVR)
is still underexplored
e Idea: Explore the wealth of

Automatic Program Repair (APR)
to fix security bugs

<7%
security-focused

of publications

e This work comes as a foundation study ° _y a APR (A

— Evaluate performance of traditional APRs
on repairing vulnerabilities in the Vul4) dataset?!

— Analyze the differences between vulnerability patches (ExtraVul)
and bug patches (Defects4))

1Bui et al. Vul4J: A Dataset of Reproducible Java Vulnerabilities
Geared Towards the Study of Program Repair Techniques. MSR’22.

Software Security

UJ Institute of TUHH J 3

Methodological challenges

(Automated) Generated patches

e |ssues with built-in test executors "ﬁ% @ Pass all the
of APR tools on real-world projects % 9 project tests

— Customized Maven/Gradle cmds

. =9 Elimi
— Feed exact vulnerable locations o | @] e
o = vulnerability

* Assessment of both the security and (yanual) security-fixing patches

(Automated) End-to-End tested patches

functional correctness of the patches .
— Carried out by three researchers _ﬁ @ @
with cross-validation (Manual) Correct Eliminate vulnerability &

patches Maintain functionalities

@J Isnosftti\txtjc:(raeosfecurity TUHH J 4

Tools’ performance

® Generate E2E tested patches for ; —8 Mo —a— CaPrg
only 20% of vulnerabilities in Vul4) 10 Emilicm:
9
e Best performers: ARJA, RSRepair-A, £ ¢ f
s 7
TBar =
: £
e On average, if an APR tool manages 2 «f
to generate ten E2E tested patches: |
— three are useless 1 | |
. . i Generated E2E tested Security-fixing Correct
— three eliminate vulnerability yet (Automated (Automatd (Manual Check) (Manual Check)

break functionalities
— only four can be used as-is

Fapeption Handler Addition of throw stmt. 9.6% 15.5%
Addition/Removal of try-catch block 1.5% 6.1%
Addition/Removal of method call 65.3% 73.7%
Method Call Change of arguments of method call 14.4% 18.2%

Loop Addition of break/continue stmt. 0.0% 2%

Change of iteration variable 0.3% 0.5%
Addition/Removal of object instantiation 3.3% 23.2%
Object Instantiation = Change of arguments of constructor 1.8% 2%
Change of constructor type 1.8% 2.5%

Method Definition Addition/Removal of method definition 6.8% 13.6%

J|

Institute of
Software Security

TUHH |

Repair patterns

MC = Method Call

Group

Repair Patterns

Infinite Loop Handling

- Add break/continue/throw to exit loop
- Update loop header

Most of the repair patterns do

Secure Object Instantiation

- Use secure constructor, e.g., SecureRandom
- Avoid deserialization of vulnerable class

not exist in general bug patches

User’s Permission
Management

- Add MC to check permission of executing user
- Add MC to restrict user’s permission

Secure Configuration

- Add MC to enable/disable secure/insecure features of
XML parsers ~

Most frequently used repair
patterns

External Input Validating
and Handling

- Add MC to sanitize input € — = — — - _ _ _ _ _ _ _ |

- Add If-condition + throw/return to reject invalid« = T

input/state

- Update Regular Expression for validating input

- Add ‘/’ to system path or URI path to prevent Path
Traversal

Fix ~34% of the vulnerabilities
in the dataset

Others

- Remove code to avoid sensitive data/API exposure
- Move code

@J lSn;ftti\E\tJ(;?eosfecurity TUHH l 7

Key takeaways ©) /tuhh-softsec/APR4VuI

« Traditional APR tools have poor performance in
fixing vulnerabilities = do not use them as-is

Published in the Journal of
Empirical Software Engineering

« New repair patterns enable the ability to fix
vulnerabilities = improve the APR tools

