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ABSTRACT

Automating the repair of vulnerabilities is emerging in the field
of software security. Previous efforts have leveraged Automated
Program Repair (APR) for the task. Reproducible pipelines of repair
tools on vulnerability benchmarks can promote advances in the
field, such as new repair techniques. We proposeMaestro, a de-
centralized platform with RESTful APIs for performing automated
software vulnerability repair. Our platform connects benchmarks
of vulnerabilities with APR tools for performing controlled experi-
ments. It also promotes fair comparisons among different APR tools.
We compare the performance of Maestro with previous studies
on four APR tools in finding repairs for ten projects. Our execution
time results indicate an overhead of 23 seconds for projects in C and
a reduction of 14 seconds for Java projects. We introduce an agnos-
tic platform for vulnerability repair with preliminary tools/datasets
for both C and Java. Maestro is modular and can accommodate
tools, benchmarks, and repair workflows with dedicated plugins.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.
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1 INTRODUCTION

In order to reduce development costs and avoid the exploitation of
undiscovered (and unpatched) vulnerabilities that may cause sub-
stantial losses to organizations and users, detecting and fixing secu-
rity vulnerabilities should be performed as early as possible in the
software development life cycles. As an example, a recently critical
vulnerability related to remote code execution, namely Log4Shell,
was discovered in Apache Log4j 2 (CVE-2021-442281) after being
remained unnoticed for seven years. It caused a big disruption on
the Web because Log4j has been used as the logging library for
thousands of Java packages and products, including those from
critical enterprise systems such as Amazon Web Services.

Automating the repair of vulnerabilities has a crucial role in soft-
ware security to shift left. Prior efforts approach vulnerability repair
with several techniques which are based on static analysis [8, 13–
15, 20], symbolic execution [7, 11, 17], gray-box fuzzing [9], and
dependency analysis [10]. Despite these efforts, most of the pro-
posed approaches focus mainly on C programs and cover several
specific types of vulnerabilities, such as buffer overflows. Machine
learning approaches [3, 4, 16, 21] aim to generalize the repair of
vulnerabilities; however, these are conditioned by the data. Mean-
while, automated program repair (APR) shares similar concerns to
the automated repair of software vulnerabilities, that of correcting
faulty software. APR has reached a reasonable maturity and ad-
dressed a broad range of software issues including security issues,
however, in a limited amount. This limitation is mainly due to the
lack of available benchmarks for reproducible vulnerabilities in the
literature [1]. Furthermore, a standard and reproducible execution
pipeline of repair tools on vulnerability benchmarks should be in-
troduced to encourage researchers and practitioners to perform
empirical studies and propose new repair techniques for software
vulnerabilities. Existing work focuses on frameworks for the empir-
ical studies of APR for vulnerabilities [12, 18, 19]. However, these
are initial prototypes, limited in design to scale up to an industrial
setting for repairing software vulnerabilities.

Therefore, we proposed a decentralized platform, namelyMae-
stro, to perform the evaluation of the current state-of-the-art APR
tools on the datasets of security vulnerabilities in multiple program-
ming languages (i.e., C and Java). By leveraging containerization as
the infrastructure, our platform is designed with a highly decen-
tralized architecture, which benefits considerably the large-scale
experiments of repair tools.Maestro also plays the role of a means

1https://nvd.nist.gov/vuln/detail/CVE-2021-44228
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to support research and proposals for new repair techniques by
providing benchmarks and core components for repair tools (e.g.,
fault localization, compiler, and executor of test cases). Currently,
the two first-of-its-kind vulnerability datasets CB-Repair [18] and
Vul4J [1], which are curated and devoted to the research commu-
nity on program repair for security bugs, have been partially added
in our platform. Moreover, an initial number of four repair tools
(GenProg, MUT-APR, jGenProg, jMutRepair) have been integrated
into Maestro to perform our preliminary evaluation.

The main features of Maestro are summarized as follows:
• Connectivity between repair tools and benchmarks:
The source code of vulnerable project and dependency li-
braries is shared between the benchmark and repair tool con-
tainers, which allows the tool to manipulate the source code
without running on the same machine serving the bench-
mark. Tools can assign fault location, compilation, and test
execution tasks to benchmark handlers by signal commands.

• Controlled environment for the execution of repair:
The repair tools and benchmarks are provided within the
containerized machines, which ensures the same configura-
tion and OS environment variables for every repair attempt
on our platform.

• Extensively distributed configuration and runtime ar-

chitecture: Repair tools and benchmarks are integrated into
the platform as containers via plug and play manners, in
which domain-specific language (DSL) files are used to de-
scribe the metadata for running the tools and serving the
benchmarks. These containers are organized in a microser-
vice architecture, in which RESTful APIs are geared to per-
form the interactions between these nodes.

2 PLATFORM ARCHITECTURE

Both APR tools and benchmarks of bugs depend on a specific con-
figuration of their host environment to work correctly that, if not
configured accordingly, may influence their behavior and results.
Additionally, different tools and programs may conflict due to their
OS/dependency requirements, which adds complexity to evaluat-
ing multiple APR tools across numerous benchmarks. Thus, APR
requires controllable, reproducible, and independent environments
that are easy to interact with to perform accurate experiments.

We propose Maestro, a platform that provides an accessible
means of performing automated repair of software vulnerabilities
in isolated environments and in an out-of-the-box manner.Mae-
stro has a decentralized and microservice-based architecture based
on Docker containers2 as illustrated in Figure 1.Maestro is com-
posed of an orchestration component, Nexus, and two components
Orbisand Synapser, that respectively convert tools and benchmarks
into microservices. To integrate a tool or benchmark inMaestro,
a developer only needs to develop a plugin for its respective com-
ponent, Synapser or Orbis. Then, the plugin for Nexus needs to
connect with Synapser and Orbis for each tool/benchmark pair.

Nexus connects the tools to the benchmarks. Essentially, this
component orchestrates the repair workflow through a scripted
interaction among the tool/benchmark pairs. Nexus offers com-
mands for provisioning, serving, and managing the instance of the
2https://www.docker.com/resources/what-container/
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Figure 1: Platform Architecture and Components.

tools/benchmarks. The REST API of each component allows the
containers to communicate between them. A global docker volume
is shared between the containers for each component to read, write,
and share persistent data. Our implementation works locally but
can be easily extended to work remotely by mounting a remote file
system.

Orbis builds benchmarks of software vulnerabilities as microser-
vices. This component provides a set of methods to interact with
and handle project software snapshots. The core methods allow
checking out the project into a working directory, building it into
an executable, and testing the project’s functionality with the pro-
vided oracle. Other endpoints allow one to query the projects and
vulnerabilities from the benchmark and generate the test oracle
with provided scripts.

Synapser extends APR tools into portable microservices. It gen-
eralizes the APR tool through a plugin that offers an API with a
set of methods for preparing, executing, and collecting the results
generated by the tool. Synapser behaves as a proxy for the APR
tool through the signal commands. The signals encapsulate the
commands to be executed by the APR tool on the benchmark. Ad-
ditionally, signals can have handlers to parse and process requests
and responses. For instance, when it is necessary to map specific
arguments between the tool and the benchmark.

3 PLATFORM DESCRIPTION AND USAGE

In this section, we describe in more detail the components in our
platform, their general usage, and an evaluation of the time perfor-
mance of our platform. Due to space limitations, we give real usage
examples in our repository.3

We have implemented so far inMaestro plugins for tools and
benchmarks for C and Java programming languages. We provide
plugins for four tools (GenProg and MUT-APR for C, and jGenProg
and jMutRepair for Java), and we consider our selection to promote
a fair evaluation. Regarding the benchmarks, we provide plugins
for two datasets, CB-Repair and Vul4J, and for both, we include five
projects. We consider these datasets suitable because they have the
necessary resources for vulnerability repair. Table 1 describes in
detail the projects and their vulnerabilities that we have selected.
For the reason of simplicity and due to the limitations of the targeted
tools, we focused on versions of programs/projects that contain a
single kind of vulnerability and that have a single file.
3https://github.com/epicosy/nexus/blob/main/TUTORIAL.md
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Table 1: Datasets, execution times, and overheads.

Execution Times (in seconds)

Previous MaestroDatasets Projects CWE

GenProg MUT-APR GenProg MUT-APR
Overhead

BitBlaster 824 247 394 270 419 24
expression_database 119 1,184 106 1,279 144 66,5
Scrum_Database 122 490∗ 115 488∗ 122 2,5
WordCompletion 125 897 47 953 48 28,5

CB-Repair [18]

yolodex 787 477∗ 157 467∗ 155 -6
jGenProg jMutRepair jGenProg jMutRepair

apache/tika 835 741 260 762 264 12,5
cloudfoundry/uaa 200 421 320 348 282 -55,5
jenkinsci/jenkins 835 556 286 523 259 -30

spring-projects/spring-framework 22 146 155 131 139 -15,5
Vul4J [1]

x-stream/xstream 502 197 100 207 101 5,5
∗ Repair succeeds with POV timing out.

3.1 Setting the components

Each component inMaestro requires a schema file and a plugin
file to work. The schema file is written in YAML with a specific
specification language for the component, and the plugin file is
written in Python. The components provide generic objects and
methods to facilitate the implementation of the required plugins.
The generic methods in the plugins are connected to the respec-
tive REST API endpoints in the component. The general workflow
for instantiating the benchmark/tool in our platform consists in:
(i) provisioning, to instantiate a Docker container with the tool or
benchmark and their respective environment to function correctly
(Nexus handles provisioning by building the container’s image from
a docker file or by pulling it from the Docker Hub library); (ii) setup,
to install the component (Synapser for tools/Orbis for benchmarks)
that interacts with Nexus along with the necessary plugin and its
configuration. This step can be performed during the provisioning;
and (iii) serving, to launch the REST API of the component, which
allows remote interaction and transmission of structured data.

3.1.1 Setting up the benchmark. This requires to represent the
benchmark in the schema file, and specifying the metadata for
the vulnerable snapshots of each project. The essential attributes
for each project are: (i) path to the GitHub repository where the
project is hosted; (ii) name of the project and a unique identifier;
(iii) build specification (system, version, architecture, arguments,
and scripts); (iv) commit hash of the vulnerable version; (v) a unique
identifier for the vulnerability (the same commit can have multiple
vulnerabilities); and (vi) relative path to the vulnerable file(s), each
with the vulnerable line number(s).

In addition to that, each project must contain two additional files
with a schema to test the project. The tests file includes the test cases
that ensure the correct functionality, and the proof of vulnerability
(PoV) file specifies the exploit(s). Each file must specify: (i) the
directory path of the script for testing, (ii) the command to run
the script, (iii) the path to the test cases, (iv) general arguments if
needed, and (v) the test cases. Each test case must have specified
its name and file name. Other possible attributes are timeout limit,
specific arguments, and order in which the tests should be run.

The plugin file represents the generic operations performed by
the benchmark and it must implement at least the functionality for
the: (i) build method: to build the project with the configuration
in the schema file; and (ii) test method: to test the project with

the testing scripts on the test cases. The default checkout in Orbis
must be used in the plugin to download/update all project files
in the vulnerable version to a working directory. Two additional
methods can be implemented, gen_povs and gen_tests. The former
generates the proof of vulnerability tests and can be done with
program analysis tools. The latter generates the functionality tests
and can be done with testing techniques, e.g., model-based testing.

3.1.2 Setting up tool. This includes defining the schema file that
represents the tool which must contain the following attributes:
(i) name of the tool executable; (ii) directory path of the tool exe-
cutable; (iii) signal/command pair (to bind custom build/test han-
dlers to commands executed by the tool on the benchmark); and
(iv) general arguments for the tool. The plugin file must implement
the functionality for the following: (i) repair method: to provide
the repair command that launches the execution of a repair in-
stance on a specific project; and (ii) get_patches method: to list all
the generated patches including the fixes (these are in the form of
diffs between the target file and the generated file). Optionally, the
plugin file can implement the parse_extra method to process extra
arguments injected by the tools in the commands. Additionally, the
plugin can implement custom handlers for the signal commands
to process the responses returned by the benchmark through the
Orbis API. Synapser also provides the stream method for querying
information on the execution status of the repair, along with a web
socket for streaming the execution output of the tool.

3.1.3 Running the tool on the benchmark. In Nexus, two schema
files are necessary for defining the services for the tool and the
benchmark. These must include the following attributes: (i) name
of the component; (ii) type of the component (tool/ benchmark);
(iii) Docker image tag; (iv) GitHub/DockerHub repository; (v) name
of the Docker container; and (vi) API port number. The plugin
file represents the repair workflow between the tool/benchmark
pair, and it is implemented in the run method by using the API of
each component. The generic workflow includes: (i) checking out
the vulnerable snapshot of a particular project; (ii) setting up the
build and test signals; (iii) setting up repair arguments, such as the
number of tests; and (iv) sending the repair request to Synapser.

3.2 Evaluation

To demonstrate the time performance of Maestro, we execute
our tools in C on projects from CB-Repair with successful repair
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attempts—reported in SecureThemAll [18]. Similarly, for Java, we
extend RepairThemAll [5] with Vul4J. We execute the experiments
on the exact conditions—hardware, configurations, and tests. Ta-
ble 1 includes information about the datasets, the projects, their
associated vulnerability type, and the running times of each tool
within the environment of previous studies and with Maestro.
Table 1 also include an overhead column that describes the differ-
ence in the execution times on average for Maestro compared
to the execution times with the environment of previous studies.
Values in the overhead column indicate that the tools in C have a
higher overhead. RepairThemAll performs post-repair tasks such
as patches gathering while Maestro does not. This justifies the
lower overhead results for Java projects and also gives a hint on
the trade-off of introducing the signal commands. On average, an
overhead of 23 seconds is introduced for C tools, and a reduction of
14 seconds for Java tools. The complete results can be found here. 4

4 RELATEDWORK

In this section, we first summarize the related work that proposed
the platforms and frameworks dedicated to the empirical studies of
program repair. Then we introduce the vulnerability datasets for C
and Java that can be added to our platform.

Platforms: The closest to ours is BugZoo platform [19], which
provides a decentralized and controlled environment for sharing
data and interactions between the C datasets and the repair tools.
Maestro complements BugZoo in several ways. First, Maestro
allows repair tools to entrust core tasks of the repair process to
dataset handlers via signal commands for more reliable performance,
which BugZoo does not. Second, Maestro aims for vulnerabilities
in multiple programming languages, while BugZoo focuses on gen-
eral bugs in only C programs. RepairThemAll [5] is a monolithic
framework used to perform a large-scale evaluation of eleven repair
techniques on 2,141 generic Java bugs obtained from five different
benchmarks. RepairThemAll also allows running multiple repair
experiments in parallel (maximum number of threads in the local
machine). SecureThemAll [18] follows a similar methodology to
RepairThemAll, and it evaluated ten different C repair techniques
on 55 security vulnerabilities from the CB-Repair dataset. APIARTy,
proposed by Kechagia et al. [12], is a dockerized execution frame-
work used to evaluate fourteen Java repair tools on a dataset of 110
API misuses related to security issues. APIARTy follows the simply
monolithic architecture and focuses only on Java programs.

Datasets:Most vulnerability repair studies usually require the
input datasets with the tests or exploits for the vulnerabilities. The
Juliet Test Suite [6] is a dataset that contains 64, 099 small vulnera-
ble programs covering 118 different categories from the Common
Weakness Enumeration list (CWE). However, since it is a synthetic
dataset, these programs contain the simplest forms of vulnerabilities
which is rarely the case in well-established projects. An example of
a dataset with programs close to real software is the CB-Repair [18].
It includes 55 vulnerable programs written in C and covers 36 dif-
ferent CWEs. Its programs are from the DARPA Challenge Sets [2],
and their design allows the evaluation of vulnerability remedia-
tion systems. Vul4J [1] is the closest example of a dataset with real
software and reproducible vulnerabilities. This dataset contains 51

4https://github.com/epicosy/nexus/blob/main/patches

open-source Java projects extracted from the “Project KB”, cover-
ing 79 vulnerabilities and spanning over 23 different CWEs. The
projects in Vul4J come from multiple domains, including libraries,
web frameworks, data-processing apps, and CI/CD servers.

5 CONCLUSION

In this paper, we present Maestro, a platform for evaluating re-
pair tools across different benchmarks with low overhead to tool
developers. Our platform is designed to be used as an extensible,
portable, and decentralized sandbox that assists researchers and
practitioners in conducting empirical program repair research with
ease. Maestro provides handy interfaces that allow integrating
out-of-the-box repair tools and benchmarks via a plug and play
approach. Our experiments showed that there is no considerable
performance overhead of repair progress in our pipeline compared
to the original. As a proof-of-concept, we integrated a total of four
repair tools and two vulnerability datasets for the C and Java pro-
gramming languages into our platform.
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