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Abstract—Docker is a widely adopted platform that enables
developers to create lightweight and isolated containers for
deploying applications. These containers can be replicated from
a single blueprint specified by a text file known as a Dockefile.
The Dockerfile smells might not only hinder the performance of
containers but also potentially introduce security risks. State-
of-the-art scanning tools, such as Hadolint and KICS, are
available to efficiently detect Dockerfile smells. Still, there is a
lack of approaches focusing on resolving these issues. Therefore,
we present DOCKERCLEANER, an automated repair tool that
suggests fixes for eleven Dockerfile security smell types. Our
tool employs the repair actions inspired by the best security
practices for writing Dockerfiles. The evaluation results show
that DOCKERCLEANER can remove the artificially injected
security smells from 92.67% of the Dockerfiles and guarantee the
buildability for 99.33% of them. Specifically for security smells
in real Dockerfiles, DOCKERCLEANER outperforms the state-of-
the-art repair tool by a wide margin. Finally, we leveraged the
fixes generated by DOCKERCLEANER to propose improvements
to twelve official Docker images. Eight pull requests have been
accepted and merged by the developers.

Index Terms—Docker, Security Smells, Automatic Repair

I. INTRODUCTION

Nowadays, due to the need for fast-paced software develop-
ment, much attention has been directed toward infrastructure
services and tools that facilitate rapid development, testing,
and deployment of applications by developers. One of the
platforms that cater to this need is Docker [1], which offers
a lightweight and transportable containerized environment for
running applications. According to a recent survey conducted
by Stack Overflow with over 70,000 developers in 2022,1

Docker was ranked first as the most loved and wanted platform
and second as the most popular tool used by professional
developers as a fundamental tool. Docker images can be con-
sidered as prototypes for Docker containers, as each container
is an instance of the image. A source code-level file containing
instructions, referred to as a Dockerfile, is needed for the
specification of the Docker image. Analogous to source code
in programming languages, a Dockerfile has the potential to
contain code smells. The smells in a Dockerfile not only
impede the maintainability of Dockerfile artifacts but can also
pose potential security threats.

1https://survey.stackoverflow.co/2022/

There exist a large number of academic works and practical
tools that have focused on detecting Dockerfile security smells,
such as Hadolint [2], KICS [3], Docker Bench for Security [4],
and Bianncle [5]. These tools showed their efficiency and
effectiveness in identifying various smell types in Dockerfiles.
Therefore, developers have widely used them to assess the
quality of their Dockerfiles in software development and
maintenance. Nevertheless, none of them can suggest fixes
or remediations for these issues. Only a few techniques and
tools [6]–[9] have been proposed to fix specific types of smells
or have not focused on security-related smells. To fill the
gap, we propose a set of repair actions that automatically
generate fixes and remediation suggestions for eleven types
of security smells in Dockerfiles. Our repair techniques have
been implemented into a tool, namely DOCKERCLEANER. Our
tool employs language-docker [10], which is extracted from
Hadolint, to parse Dockerfiles and perform pretty-printing
for the suggested patches. The repair actions have been
based on the best practices in writing Dockerfiles from CIS
Docker Benchmark [11] and OWASP Docker Security Cheat
Sheet [12]. These are reliable sources for deriving our repair
actions as security experts have well-maintained them. Not all
repair actions are straightforward to implement. For example,
the repair action “Use Version Pinning” requires sophisticated
communication with DockerHub API and package repositories
of the package managers to retrieve the correct versions for
the pinned packages.

To evaluate DOCKERCLEANER, we first prepared a dataset
of 910 Dockerfiles with known smells. This dataset was
generated from 91 official Docker images with the smell-fixed
versions. We also assessed the impacts of our proposed fixes
on the maintainability of the Dockerfiles. To this end, we
rebuilt the Dockerfiles after the repair and checked whether
the builds broke due to the inserted changes or not. In an
extended evaluation on a dataset of 4794 real-world large-
scale Dockerfiles, we compared the performance of our tool
against the baseline repair tool, PARFUM [8]. Finally, we
evaluated the practical benefits of DOCKERCLEANER to the
community. We selected the suggested repairs from our tool
for the original Dockerfiles (that we collected from official
images) for preparing the pull requests to the developers to
obtain their feedback.

https://survey.stackoverflow.co/2022/


The results show that DOCKERCLEANER is able to repair
security smells for 92.67% of the injected Dockerfiles. More-
over, only six Dockerfile builds are broken after the repair,
which means the build degradation is 0.67%. In the extended
evaluation, our tool significantly outperforms PARFUM in
fixing security smells. That is, for the four security smells
supported by both of the tools, DOCKERCLEANER can remove
them from 82.81% of the Dockerfiles while PARFUM can
address them for 46.70% of the Dockefiles. In the practical
evaluation of our tool, we have received much positive feed-
back from the developers for the proposed fixes. As a result,
nine out of twelve pull requests have been accepted, and eight
of them have been merged into their Dockerfiles.

In summary, this paper makes the following contributions:
• A set of repair actions to fix eleven kinds of security

smells in Dockerfiles; and a tool that has them imple-
mented, namely DOCKERCLEANER.

• A dataset of 91 actual Dockerfiles (DS1) containing se-
curity smells, where each file has been manually cleaned
(hence, each file is available in a clean vs. insecure
version); and a ground truth dataset of 910 Dockerfiles
with known smells (DS2), where the files are synthesized
from the manually curated dataset.

• Contributions to the open-source community by sub-
mitting pull requests of fixes suggested by DOCKER-
CLEANER to the projects of the official Docker images.

We have also made the artifact of our tool implementation
and the evaluation available in a publicly-accessible reposi-
tory [13] to support the Open Science movement. To evaluate
the DOCKERCLEANER’s efficiency in the repair of Dockerfile
security smells, we formulate the following research questions:

• RQ1. How effective is DOCKERCLEANER in repairing
known security smells?

• RQ2. How effective is DOCKERCLEANER, compared to
the state-of-the-art, in repairing security smells in real-
world, large-scale Dockerfiles?

• RQ3. Do developers of the official Docker images ac-
knowledge security smells and accept repairs suggested
by DOCKERCLEANER?

II. BACKGROUND

In this paper, we focus on the Dockerfile smell types that
impact to the security of the Docker images and containers.
The fixed smells should not only improve the Docker build
performance, such as reducing image size and build time;
they should also make the Docker images and containers more
secure.

To this end, we selected the security smell types for our
study based on: (1) the prevalence of the smell type in
Dockefiles, which were reported in recent studies [5], [14]–
[16]; (2) the detection of the smell type is supported by the
state-of-the-art scanning tools (e.g., Hadolint, KICS); and (3)
the smell type is covered in the best security practices in CIS
Docker Benchmark [11] and OWASP Docker Security Cheat
Sheet [12] for writing Dockerfiles. The analysis of Dockerfile

smell types is included in our replication package [13]. As a
result, we come up with eleven security-related smell types
that are suitable for our study. We briefly introduce our
selected smells and their rationale as follows.

Use apt-get update alone. Using apt-get update solely
in a single Dockerfile instruction causes a cached layer for
the build of the Docker image. Therefore, the latest updates
for packages that may contain security patches could not be
fetched for the later builds.

Use no --no-install-recommends. Unnecessary apt pack-
ages for the Docker image will be added during the installation
without this option. This may increase the attack surface of
the Docker image.

No Version Pinning (includes five child smell types, specif-
ically for apt, apk, pip, npm, and gem packages). Installing
packages without having their versions pinned causes a similar
issue as “Use apt-get update alone”. The version pinning
helps force the build of Dockerfile to fetch particular package
versions regardless of what is in the previous Docker layer
cache [17].

Use ADD (instead of wget and COPY). ADD instructions
can download and unpack remote files from URLs without
any checks, which potentially introduces security risks. They
should be replaced by equivalent wget commands or COPY

instructions.
Last user is root. Running as a privileged user in the

Docker containers may allow privilege escalation attacks.
Thus, the root user should be replaced with a non-root user in
Dockerfiles.

Have secrets. Secrets stored in the Dockerfiles can cause
huge risks, as they are transferred to the Docker images during
the build and visible to every image user.

Have no HEALTHCHECK. The HEALTHCHECK commands should
be included for monitoring the health of Docker containers,
which is related to the security control of availability.

III. METHODOLOGY

In this section, we describe the approach used to conduct our
study. Figure 1 depicts the overview of our evaluation method-
ology. From the three smelly datasets that we have prepared for
the study, we ran our tool to repair the security smells for each
of the Dockerfiles. The creation of these datasets is presented
in detail in Section V. At a high level, DOCKERCLEANER
combines two stages to repair a Dockerfile. First, our tool tries
to parse the Dockerfile into an Abstract Syntax Tree (AST) for
better manipulation of the content of the Dockerfile. We follow
the idea of phased parsing, which was presented by Henkel
et al. [5] to create the enriched AST for Dockerfiles. We
used language-docker [10] for parsing Dockerfile-syntax and
ShellCheck [18] for parsing embedded shell scripts. Second,
the repair actions employed by our tool apply the fixes on the
AST and then convert the fixed AST back to the Dockerfile.
The detailed repair actions for DOCKERCLEANER are further
explained in Section IV. Across the experiments, we use
scanning tools as our oracle references to verify if the smells
are truly removed after the repair.
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Fig. 1. Overview of our research study.

A. Oracle tools for smell detection

The detection of the aforementioned smells has been sup-
ported by plenty of smell scanning tools such as Hadolint and
KICS. Hadolint is a well-known linter for Dockerfile, while
KICS, which supports various smells and IaC (Infrastructure
as Code) platforms, is not yet as established as Hadolint.
Therefore, in our study, we use Hadolint to verify the presence
of most of the considered smells in Dockerfiles, except for
“Use apt-get update alone” and “Have secrets”, as they are
currently not covered by Hadolint. For these two smell types,
we use KICS instead to detect them.

It should be noted that we are acknowledging that the
tools we selected as oracles are not perfect. In this study,
we discovered two issues related to Hadolint, which may
cause false positives2 for “No Version Pinning” and true
negatives3 for “Last user is root”. These issues have been
reported but have not been resolved by Hadolint developers
yet. Also, several issues have been found for KICS, which we
then reported to the KICS developers. These problems have
been recognized and remediated quickly. For conducting the
evaluation, we use the newer versions of KICS that include the
improvements addressing our reported issues. The list of issues
we reported to KICS developers is available in our replication
package.

B. Evaluation metric

As we rely on the results of the oracle tools, we propose
a metric named repair effectiveness to assess the performance
of the repair tool based on these smell detection results. For a
smell type S, given that DS

before is the number of Dockerfiles
flagged by the oracle tools as containing the smell before the
repair, and DS

after is the number of Dockerfiles flagged after
the repair, the repair effectiveness of the smell repair tool is
calculated as in the Equation 1.

RepairEffectiveness(S) =
DS

before −DS
after

DS
before

(1)

IV. REPAIR AND INJECTION ACTIONS

In this section, we explain in detail our proposed actions
for fixing and injecting each of the security smell types
considered in our study. We include injection actions as they
are used to automatically generate the dataset of Dockerfiles

2https://github.com/hadolint/hadolint/issues/329
3https://github.com/hadolint/hadolint/issues/328

with known smells (DS2). In most cases, we can reverse the
repair actions to reintroduce the smells. However, in certain
situations, accomplishing this is not a trivial task. We describe
these specific actions in the subsection IV-B.

A. Repair actions

Do not use apt-get update alone. To fix the smell “Use
apt-get update alone”, we first identified the RUN instructions
with an apt-get install that are after a RUN instruction con-
taining an apt-get update. The apt-get install commands
might only be able to run under certain conditions. Therefore,
we then added the command apt-get update right before each
apt-get install command. Finally, we removed the original
apt-get update that no longer served any purposes.

Use --no-install-recommends. The smell “Use no
--no-install-recommends” can be fixed by adding a
missing --no-install-recommends for every apt-get

install command. This was done by changing the
noInstallRecommends field of every AptGetInstall AST
to False. A known issue was acknowledged for this repair
action, i.e., in some cases, the fix could break the Dockerfile
build process when a recommended package was removed.
For example, the recommended package ca-certificates

should be installed along with wget if we want to make a
request to an SSL-enabled URL. We leave this for future
work.

Use Version Pinning. A version must be specified for
every installed package in the Dockerfile to completely fix the
version pinning smells. Table I shows the list of sources we
used to extract the package versions for each package manager.

In contrast to other package managers, the versions of
apt and apk packages rely on the OS release versions
of the base image defined in the Dockerfile. For ex-
ample, it has been observed that the git package ver-
sions in the apt package manager database differ be-
tween Ubuntu 22.04 (1:2.34.1-1ubuntu1.8) and Ubuntu 20.04
(1:2.25.1-1ubuntu3.10) simultaneously. Using package ver-
sions from different OS release versions might lead to incom-
patible issues, therefore, potentially breaking the build. We
found that apt and apk package managers are frequently used
to install packages in Debian-based and Alpine Linux images
(account for 94.5% of Dockerfiles in the original dataset).
Therefore, to reduce overhead costs on duplicated requests
to the version source websites for the same packages and
versions, we wrote scripts to automatically download all the

https://github.com/hadolint/hadolint/issues/329
https://github.com/hadolint/hadolint/issues/328


TABLE I
SOURCES OF PACKAGE VERSIONS FOR PACKAGE MANAGERS.

Package Manager Version Sources

apt http://archive.ubuntu.com,
https://archive.debian.org

apk https://dl-cdn.alpinelinux.org
pip https://pypi.org
npm https://registry.npmjs.org
gem https://rubygems.org

1 FROM alpine:3.17
2

3 - ADD https://example.com/tar.xz /opt
4 + RUN which wget &> /dev/null || apk add --no-cache

wget=1.21.3-r2↪→

5 + RUN wget -q -P /opt https://example.com/tar.xz

Fig. 2. An example of a patch generated by the repair action “Use wget or
COPY instead of ADD”.

version information for apt and apk packages and store them
in local databases for future queries while repairing the smells.
The following steps were followed during the repair to obtain
versions of apt and apk packages that correspond to the OS
versions.

(i) Obtain the base image digest via DockerHub API.4

Currently, we only support the images with amd64 as
the platform architecture.

(ii) Retrieve the base image based on the digest and check
whether it is an OS image or not. The OS image must
be a Debian-based or an Alpine Linux image. If the
requirement is fulfilled, extract the OS name and the
release version from the base image; otherwise, retrieve
its parent images via Docker Scout API5 and apply
the same checks to them until a satisfied OS image is
found. If the scratch image is reached, the repair should
terminate here with no fixes returned.

(iii) Use the OS image name and version to find the corre-
sponding versions of the installed packages in the local
version databases. By default, the latest versions of the
packages are returned. However, if a specific date is
provided (such as the modified date of the Dockerfile),
the versions released right before the given date are
returned.

For other package managers, that are pip, npm, and gem,
the sources in Table I provide API endpoints from which the
latest versions of the packages can be fetched. However, since
these package managers are less commonly used (only seven
Dockerfiles in the original dataset), their package versions are
fetched by the corresponding fixers on-the-fly when a repair
is performed.

Use wget or COPY instead of ADD. The ADD instruction can
add files to the Docker image from multiple sources, such
as system files on the current machine or external files from
remote URLs. To fix this smell, the ADD instruction with

4https://hub.docker.com/v2/
5https://api.dso.docker.com/v1/

normal file paths is replaced with a similar COPY instruction.
Transformation into COPY instructions is not possible for URLs,
as they do not support downloading remote files. Therefore,
RUN instructions with wget are used for the fix to fetch the
URLs. To this end, wget should be installed before we invoke
it as the alternative to the ADD instruction. An additional RUN

instruction for checking the presence of wget (and installing
it if needed) is added right before the location of the original
ADD instruction. Figure 2 illustrates an example of replacing
an ADD instruction with the corresponding wget command in a
Dockerfile using Alpine Linux as the base image. The installed
version of wget package is provided by the Version Pinning
repair action.

Have a non-root user. The smell “Last user is root” can
exist in two scenarios: (1) no user is added in the Dockerfile,
the root user is, therefore, implicitly used; and (2) root user
is explicitly used via USER instruction. In both of the cases, the
creation of a new user and switching to it via USER instruction
at the end of the Dockerfile is deemed sufficient to address the
smell. To verify that the last user is the root user, we check
whether the argument of the last USER instruction is indeed
root (username) or 0 (user ID).

Do not have secrets. Secrets can exist inside the ENV and
RUN instructions. Currently, we support the detection and fix
suggestion of secrets only in the ENV instructions. It should
be noticed that using keywords or basic regular expressions
to identify the secret names could produce false positive
results. For example, if we consider ENV variables containing
the keyword KEY as the secrets, GOOGLE_API_KEY is therefore
included in the positive set, which is widely distributed to
client applications and obviously not a secret. To avoid the
false positive results of smell detection, as well as our effort
in implementing complicated regular expressions, we currently
consider 145 known variable names (divided into three groups:
secret keys, secret tokens, and passwords) that are commonly
used in the Binnacle dataset [5] as the database for finding
secrets. It is not possible to completely fix this smell through
the proposed repair action, as the secrets still need to be
provided for the build context from outside. Therefore, secret
variables are first removed from Dockerfiles. Moreover, to
suggest the complete solution to the tool user, a comment is
also added, which states that these secrets should be provided
via --secret options of the Docker build command [19].

Have a HEALTHCHECK. It often requires in-depth familiarity
with the running application in the Docker container to write
the command to check its health. Yet, we can create the basic
HEALTHCHECK commands for several kinds of applications, such
as web-based ones. For this purpose, we first checked if the
Dockerfile used our considered applications (including apache,
nginx, node, php, and tomcat) as the base images or not. If
yes, we then added an curl command to test the accessibility
to the defined URLs for health checking. The base images are
fetched similarly in Version Pinning, and the curl package is
installed in the same way in Use wget or COPY instead of ADD.
For other base images, we added a comment to ask the tool
users to write the HEALTHCHECK commands on their own.

http://archive.ubuntu.com
https://archive.debian.org
https://dl-cdn.alpinelinux.org
https://pypi.org
https://registry.npmjs.org
https://rubygems.org
https://hub.docker.com/v2/
https://api.dso.docker.com/v1/


B. Injection actions

Use apt-get update alone. To inject the smell, first, the
existing apt-get update command in the same RUN instruction
as apt-get install commands is replaced by a no-op (:).
Then, a new RUN instruction with a single apt-get update is
inserted before the original RUN instruction.

Last user is root. The RUN instructions may depend on the
context of the running user. Therefore, it is possible to remove
the existing user from the Dockerfiles. To inject this smell, we
add a USER instruction at the end of the Dockerfile to switch
the user to the root user. The argument for USER instruction is
chosen to be either root or 0.

Have secrets. The smell is injected by generating ENV

instructions that typically contain the secrets. To this end, we
randomly picked the variable names from the database we
created for the repair action of this smell. Although the value
of several secrets starts with a prefixed token (e.g., SLACK_TOKEN
can start with “xoxb” or “xoxp” or “xapp”), we generate their
values completely randomly. ENV instructions can exist in any
place in the Dockerfile; therefore, we pick a random line
number and insert ENV instructions with secrets inside that line.

V. DATASETS OF SMELLY DOCKERFILES

As shown in Figure 3, we have prepared three datasets
for the experiments in our study, which are described in the
following subsections.

A. (DS1) Original Dockerfile dataset

A dataset of smell-free Dockerfiles (i.e., containing no
smells) is needed for our controlled experiments on inject-
ing and fixing known smells. There exist multiple available
Dockerfile datasets [5], [15], [20] with diversity in domains.
However, none of these are smell-free. One possible option
was to filter one of the existing datasets for smell-free Dock-
erfiles. We set the following criteria when selecting Dockerfiles
to create our smell-free dataset:

• C1. Non-trivial: The Dockerfile should have a sufficient
amount of instructions to create a high-quality dataset.
As there are not many locations to inject the smells if
the Dockerfile contains too few instructions.

• C2. Reproducible build: The Dockerfile should be build-
able, as we want to check if our injecting and fixing
actions affect the buildability of the Dockerfiles or not.

• C3. Commonly used: The Dockerfile is recommended
to be selected from the commonly used Docker images
on DockerHub as these Dockerfiles are well-written by
experts and are more likely to contain less smell.

We evaluated the existing Dockerfile datasets and found
that none of them met our defined requirements. For ex-
ample, in the Binnacle dataset [5], we found that 33,056
(18.52%) of the Dockerfiles did not have the detected smells.
Nonetheless, 21,454 (64.90%) of them contained only the
FROM instructions and no other content. The complexity of
these Dockerfiles is much lower than the general Dockefiles,
and they, therefore, violated C1. Even the Binnacle’s Gold
Set (selected Dockerfiles from docker-library organization in
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Fig. 3. The datasets we used and the approaches to create them.

Binnacle dataset [5]) violated our criteria. These Dockerfiles
are sufficient in length and commonly used. However, they are
different Dockerfiles for only 40 Docker images, and many of
them are not reproducible for builds as they are deprecated
or their build context files are missing. The build context files
are required when we want to add external files to the Docker
images with the COPY instructions. As a result, we were not
able to use this Gold Set because it did not meet C2.

Therefore, we decided to find a dataset of Dockerfiles on
our own that is able to be built, non-trivial, and well-written
to create our dataset of smell-free Dockerfiles. To this end,
we first found 173 official images from DockerHub6. These
official images have seen widespread use, especially with more
than one million pulls. From these 173 images, we excluded:
(1) 29 deprecated images; (2) two images that are the old
versions of hello-world image; (3) three images containing
only the FROM instructions. After this step, we were left with
138 images. We further discarded the images for operation
systems (OS) and programming languages (PL) as they are
not necessarily checked for several of the security smells we
consider in our study. For example, OS and PL images do
not need a HEALTHCHECK instruction as they do not provide an
actually running application whose health is to be checked. As
a result, we retained 91 application images as our final Docker
image list.

To find Dockerfiles for the chosen Docker images, we found
91 associated GitHub repositories via the image description
texts. We then searched for all the existing Dockerfiles in
the linked repositories7. In total, we found 866 Dockerfiles
existed that could create different versions of these images (on
average, 9.5 Dockerfiles existed in each repository, with the
standard deviation being 15.93). To avoid bias toward specific
images, a buildable Dockerfile was randomly selected with
its context files from each repository. Consequently, the final
dataset included 91 Dockerfiles that have been used to create
91 Docker images.

6https://hub.docker.com/u/library. Accessed on 01-03-2023.
7We performed GitHub searches to find Dockerfiles with the pattern

“https://github.com/<org>/<project>/search?l=Dockerfile”.

https://hub.docker.com/u/library


B. Manually-curated smell-free Dockerfile dataset

As we previously mentioned, in order to create the dataset
of injected Dockerfiles (DS2), we need a smell-free dataset
to start from. To this end, the security smells in the orig-
inal Dockerfiles (DS1) must be removed. This was done
by manually fixing every smell in each Dockerfile, which
was detected by the smell detection tools. For most of the
smells, it was straightforward to identify them and apply
the corresponding fixes. For some smells, though, it was not
obvious to synthesize their fixes. Note, we also fixed most of
the smells detected by Hadolint and KICS rules which were
not included in this study (e.g., DL3003: Use WORKDIR instead
of cd, DL4006: Use -o pipefail for the shell, etc.). This helps
make the smell-free dataset more usable for other studies. We
further explain the curation procedures for the smells with
non-trivial fixes as follows.

Have no HEALTHCHECK. Most of the Dockerfiles in the
original dataset do not contain any HEALTHCHECK commands.
To fix this kind of smell, we first went to the official Docker’s
healthcheck repository8 to look for the related healthcheck
scripts of the applications running in the Dockerfiles. For the
applications which are not listed in the repository, if they serve
any web services, we then used the command curl to check
whether we could reach the web service or not. Otherwise, we
wrote the HEALTHCHECK commands based on our knowledge.

No Version Pinning. We extracted the package versions
from the build logs of Dockerfiles and bound them to the pack-
ages in the installation commands. To this end, we scanned
the build logs to find the lines matching our defined patterns
from which we could retrieve the names and versions of the
installed packages. For example, one of the patterns we used to
obtain versions of apk packages is Installing <package_name>

(<version>). This step was done automatically and generated
a csv file containing information on packages and versions.
Next, for each Dockerfile, we then selected the corresponding
versions of the packages and manually pinned them in the
installation commands. If we found a package was installed
with its alias name, we then replaced it with the official name
of the package. For the known false positives of Hadolint,
we substituted the shell variables with their values if it was
possible to infer them in the Dockerfiles. Otherwise, we moved
the falsely detected installation commands into a new RUN

instruction, and we then added a Hadolint’s pragma to ask
the tool to ignore version pinning checks on it. This ensured
our dataset was truly smell-free to the oracle tools.

Use no --no-install-recommends. We first added the flag
--no-install-recommends to the apt-get install commands,
then we built the Dockerfile. If the build was broken, which
was mostly due to the removal of suggested packages, we
manually identified and added them to the installation com-
mands.

8https://github.com/docker-library/healthcheck

TABLE II
DS2: THE NUMBER OF ATTEMPTS TO INJECT SMELL TYPES AND THE

SUCCESS RATES.
∗These smell types belong to the same smell type addInsteadOf{Wget,Copy},
however, are generated with different injectors.

Smell Type #Attempts #Succeed

noVersionPinningAptGet 428 233 54.44%
noVersionPinningApk 431 151 35.03%
noVersionPinningPip 442 13 2.94%
noVersionPinningNpm 454 11 2.42%
noVersionPinningGem 403 5 1.24%
noAptGetInstallRec 451 224 52.21%
useAptGetUpdateAlone 429 248 54.99%
addInsteadOfWget∗ 460 9 1.96%
addInsteadOfCopy∗ 425 348 81.88%
lastUserIsRoot 473 280 59.20%
haveSecrets 450 450 100%
haveNoHealthcheck 441 441 100%

C. (DS2) Synthetic Dockerfile dataset of known smells

After obtaining 91 smell-free Dockerfiles, we tried to inject
the smells into to create the smelly dataset.9 Particularly, for
each Dockerfile, we used ten different random permutations on
all the smells to create ten injected Dockerfiles with different
smell lists. This increased the variety of smell types in the
injected Dockerfiles. We obtained a total of 910 Dockerfiles
with known smells. Table II shows how often each smell
type was attempted to inject into the Dockerfiles and the
successful attempts rate. For most smells, it was successful
for most of the attempts; however, not for some smells. For
instance, several package managers had very few successful
injections for their version pinning smells. The reason is that
these package managers have been used in a few Dockerfiles
(one original Dockerfile for gem, two for pip, and four for
npm). The smell addInsteadOfWget had only nine successful
injections as the ADD instruction currently does not support
many features that wget offers (e.g., adding specific HTTP
headers for authentication). Only one original Dockerfile could
be injected with this smell. All the injected smells were
detected correctly by the detection tools, and further manual
checks on a sample of 200 random Dockerfiles verified that
there were not any false positive or false negative results from
the detection tools.

D. (DS3) Large-scale real-world Dockerfile dataset with
smells

For the extended evaluation of DOCKERCLEANER, we
reused the real-world Dockerfiles from Binnacle dataset [5]. To
this end, we selected 4957 Dockerfiles, each of which contains
at least two instructions and at least 100 lines of code, as we
wanted to have the Dockerfiles that are sufficient in complexity
and more likely to have the smells than the simple Docker-
files. We further discarded 160 Dockerfiles that could not be
parsed by language-docker and three Dockerfiles that were
not detected with any considered smells by the oracle tools.

9Hereafter, we use the terms “synthetic dataset” and “injected dataset”
interchangeably to refer to this dataset.

https://github.com/docker-library/healthcheck
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Fig. 4. DS3: The smells prevalence in the large-scale Dockerfile dataset.

After this step, we are left with 4794 Dockerfiles as our final
dataset. Figure 4 shows how prevalent each smell type exists
in this dataset. Interestingly, the smell noAptGetInstallRec is
simple to avoid in practice; however, it stays in 44.36% of the
real-world Dockerfiles in this dataset.

VI. RESULTS

In the upcoming subsections, we describe the results of the
conducted experiments to answer the three research questions
that we posed.

A. RQ1. Repair performance on DS1 and DS2

To answer the first research question, we used DOCKER-
CLEANER to automatically repair smells in the injected dataset
and the original dataset. We included the original Dockerfiles
for the evaluation as we wanted to check if our tool could fix
the smells in their natural forms rather than their artificially
injected versions. For each injected Dockerfile, a smell was
only attempted to be fixed if we knew that it was successfully
injected into the Dockerfile before. Meanwhile, all the smells
were attempted to be fixed for the original Dockerfiles. We
then checked if the smells were completely addressed by
analyzing the results with the oracle tools. For each smell type,
we evaluated the repair effectiveness by calculating the number
of smelly Dockerfiles detected by the oracle tools before and
after the repairs. We considered a repair successful only if it
removed all the instances of the smell types in the Dockerfile.
Table III shows repair results of DOCKERCLEANER on these
two datasets.

Synthetic dataset performance (DS2). Most of the smells
were fixed successfully in the dataset. The overall repair effec-
tiveness is 92.67%, which means that the smells were removed
completely from 92.67% of the injected Dockerfiles. Nonethe-
less, it is not surprising that haveNoHealthcheck is the least
repaired smell type by far. It requires a deep understanding
of container applications to synthesize the proper HEALTHCHECK

commands. This smell still exists in 339 Dockerfiles after the
repairs. For a number of Dockerfiles, the No Version Pinning
smells for apt and apk was not fully fixed. We found that the
apt and apk packages, which could not have their pinned, are
stored in different version sources than the ones we used as in
Table I. For instance, mongo developers store mongo-related

apt packages on their own repository.10 The addition of new
version sources in our tool will resolve this issue.

Original dataset performance (DS1). The original Dock-
erfiles violated only six smell types in our smell list. There is
a similar trend for fixing smells in the original and injected
datasets. The percentage of original Dockerfiles that are smelly
to No Version Pinning for apt and apk remains higher than
in the injected datasets after repair. This can be explained by
two reasons. First, 22 original Dockerfiles used shell variables,
such as $buildDeps and $runDeps, as the proxies for the list
of installed packages. Our tool did not support repairing the
smells in these cases, as well as Hadolint detected the wrong
smells for them. Second, several Dockerfiles tried to install
the packages with their alias names. For instance, couchbase’s
Dockerfile used the alias name man to install the apt package
man-db. DOCKERCLEANER currently allows pinning versions
for only the official package names.

Impact on buildability. After the repairs, we built the
Dockerfiles to make sure that our suggested fixes did not
break the builds. Table IV shows the number of successful
builds before and after applying the smell injection and repair
actions on our datasets. It should be noted that 20 out of
910 injected Dockerfiles were unable to build before the
repairs. If we take only the buildable Dockerfiles into account
as the input, DOCKERCLEANER-suggested fixes break the
builds for 0.67% of injected Dockerfiles and 5.49% of original
Dockerfiles. By analyzing the build logs, we found that
language-docker could not parse correctly the Dockerfiles of
two images, which caused the build degradation of 2.19% for
the original Dockerfile repairs. This was reflected for the smell
injection, i.e., the Dockerfiles seeded from these two original
Dockerfiles was not buildable. The remaining degradation of
the original Dockerfile builds was caused by suggested fixes to
noAptGetInstallRec in cases where it removed recommended
packages that were necessary for the builds. An issue related to
the repair action Use Version Pinning in mariadb’s Dockerfiles
caused the build degradation for the repair of the injected
dataset. These Dockerfiles fetched apt packages from both the
Debian repository and the mariadb repository, with a prefer-
ence for the latter. While the mariadb-related packages should
be obtained from the mariadb repository, DOCKERCLEANER
pinned them with the incompatible versions from the Debian
repository.

Answers to RQ1: DOCKERCLEANER is able to repair most
of the security smells with the overall repair effectiveness
of 92.67% in the DS2 dataset. “Have no HEALTHCHECK” is
by far the less repaired the security smells. We found that
only 0.67% of Dockerfiles were broken due to the suggested
fixes from our tool. A similar repair trend is confirmed by
the repair results in the DS1 dataset.

B. RQ2. Repair performance on the large-scale dataset (DS3)
In this research question, we followed the same approach we

used to evaluate DOCKERCLEANER on the dataset of original

10https://repo.mongodb.org/apt/

https://repo.mongodb.org/apt/


TABLE III
THE NUMBER OF SMELLY DOCKERFILES DETECTED BEFORE AND AFTER THE REPAIR OF

THE ORIGINAL (DS1) AND INJECTED (DS2) DOCKERFILE DATASETS.

“−” denotes that the smell type does not exist in the mentioned dataset.

#Smelly Dockerfiles

Smell Type Injected dataset (DS2) Original dataset (DS1)

Before repair After repair Before repair After repair

noVersionPinningAptGet 233 100.00% 15 6.44% 48 52.75% 12 13.19%
noVersionPinningApk 151 100.00% 7 4.64% 32 35.16% 13 14.29%
noVersionPinningPip 13 100.00% 0 0.00% 1 1.10% 0 0.00%
noVersionPinningNpm 11 100.00% 0 0.00% 1 1.10% 0 0.00%
noVersionPinningGem 5 100.00% 0 0.00% − − − −
noAptGetInstallRec 224 100.00% 0 0.00% 17 18.68% 0 0.00%
useAptGetUpdateAlone 248 100.00% 0 0.00% − − − −
addInsteadOf{Wget,Copy} 357 100.00% 0 0.00% − − − −
lastUserIsRoot 280 100.00% 0 0.00% − − − −
haveSecrets 450 100.00% 0 0.00% − − − −
haveNoHealthcheck 441 100.00% 339 76.87% 89 97.80% 69 75.82%

TABLE IV
THE BUILD ERROR RATE AFTER APPLYING SMELLS INJECTION AND

REPAIR ACTIONS IN DS1, DS2, AND THE SMELL-FREE DATASET.
∗The size of the smell-free dataset was multiplied up to 910 Dockerfiles before
we injected the smells.

Action: #Buildable Build
Input dataset → Output dataset Before After degradation

Smell Injection: Smell-free∗ → DS2 910 890 2.20%
Smell Repair: DS2 → Fixed 890 884 0.67%
Smell Repair: DS1 → Fixed 91 86 5.49%

Dockerfiles. We excluded the buildability verification step as
it might not be possible to build many Dockerfiles in this
dataset (as we mentioned in V-A). We also included the repair
results from PARFUM [8], which is the only available tool
for fixing Dockerfile smells in the literature, to compare with
our tool. To this end, we first obtained the source code of
PARFUM (checkout version: c40db3e) and executed it to repair
our considered smells in this dataset. Table V presents the
smell repair results of DOCKERCLEANER and PARFUM on
the large-scale dataset. The symbol “−” denotes that PARFUM
has not run on that kind of smell. According to PARFUM’s
documentation, this tool supports the detection and repair of
four smell types in our study.11

Overall, DOCKERCLEANER has the repair effectiveness as
64.04% on the large-scale dataset across all considered smell
types. For the common smells, on average, the repair effec-
tiveness of DOCKERCLEANER and PARFUM are 82.81% and
46.70%, respectively. This indicates that our tool outperformed
PARFUM by 36.11% in terms of fixing these smell types.
Our results showed that PARFUM’s performance is inferior in
repairing lastUserIsRoot and useAptGetUpdateAlone smells.
Inspecting PARFUM’s source code revealed that this tool
supports detection; however, not yet repair for lastUserIsRoot.
Surprisingly, Hadolint could not detect this smell type in four
smelly Dockerfiles after we repaired them with PARFUM.

11https://github.com/tdurieux/docker-parfum/blob/c40db3e/README.md

Further manual checks disclosed that this phenomenon was
caused by the issue with the repair rule “Use COPY Instead Of
ADD” of PARFUM. This rule generated the wrong Dockerfile
syntax in some cases, as illustrated in the first example case in
Figure 5. Hadolint cannot parse and scan smells in a Dockerfile
that contains syntax errors. Therefore, no smells were de-
tected by Hadolint in these Dockerfiles. By adopting the AST
parser from Hadolint, which is well-developed and actively
maintained, our tool could mitigate the risks of generating
Dockerfiles with syntactic errors and successfully fix this kind
of smell. For useAptGetUpdateAlone smells, PARFUM does
not support the repair if there were multiple apt-get update

and apt-get install commands in the Dockerfile. This is
demonstrated as the second example case in Figure 5. While
PARFUM could not propose any fixes, DOCKERCLEANER-
suggested a fix that passed the KICS checks by inserting
apt-get update right before each of apt-get intall commands
and removing the original apt-get update command. A repair
that combines both the apt-get update command and the
apt-get intall commands into a single instruction would
be the better solution. We leave this for our future work.
Regarding “Use ADD instead of wget and COPY” smells, the
lower repair performance of PARFUM compared to our tool is
due to the fact that PARFUM cannot fix the ADD instructions
with URLs while DOCKERCLEANER supports that.

Answers to RQ2: DOCKERCLEANER is able to repair
security smells for 64.04% of the large-scale Dockefiles
in the DS3 dataset. Especially to a group of four security
smells, DOCKERCLEANER significantly outperforms the
baseline repair tool by 38.11% in terms of repair effective-
ness. We discussed the reasons why our tool is superior to
the baseline in repairing these types of smells.

C. RQ3. Developer feedback on submitted repairs

In this final experiment, we evaluated the practical benefits
of DOCKERCLEANER to the developers. To this end, we

https://github.com/tdurieux/docker-parfum/tree/c40db3eefe24a75e5ef2dda61ca648a272a2e775
https://github.com/tdurieux/docker-parfum/blob/c40db3e/README.md


TABLE V
THE NUMBER OF SMELLY DOCKERFILES DETECTED BEFORE AND AFTER THE REPAIR OF THE EXTENDED DATASET OF 4794 DOCKERFILES (DS3).

“−” denotes that the mentioned tool does not support the repair of the smell type.

#Smelly Dockerfiles

Smell Type Before repair After repair

DOCKERCLEANER PARFUM

noVersionPinningAptGet 3259 67.98% 2702 56.36% − −
noVersionPinningApk 873 18.21% 696 14.52% − −
noVersionPinningPip 1112 23.20% 435 9.07% − −
noVersionPinningNpm 258 5.38% 19 0.40% − −
noVersionPinningGem 231 4.82% 1 0.02% − −
noAptGetInstallRec 2127 44.37% 193 4.03% 73 1.52%
useAptGetUpdateAlone 855 17.83% 470 9.80% 822 17.15%
addInsteadOf{Wget,Copy} 808 16.85% 0 0.00% 122 2.54%
lastUserIsRoot 275 5.74% 13 0.27% 271 5.65%
haveSecrets 128 2.67% 32 0.67% − −
haveNoHealthcheck 4746 99.00% 4378 91.32% − −

# Smell case 1: Use wget or COPY instead of ADD
ADD . /home/dataman/n6
# Parfum's patch, breaks the Dockerfile-syntax
# (At least two arguments are required for COPY instructions)
COPY ./home/dataman/n6
# DockerCleaner's patch, passes the checks of Hadolint
COPY . /home/dataman/n6
----------
# Smell case 2: Do not use apt-get update alone
RUN apt-get update
RUN apt-get intall -y --no-install-recommends wget
RUN apt-get intall -y --no-install-recommends git

# Parfum's patch
## No changes

# DockerCleaner's patch, passes the checks of KICS
RUN :
RUN apt-get update && apt-get intall -y --no-install-recommends wget
RUN apt-get update && apt-get intall -y --no-install-recommends git

Fig. 5. Patches generated by PARFUM and DOCKERCLEANER.

utilized the DOCKERCLEANER-suggested fixes for the Dock-
erfiles of official Docker images and submitted pull requests
to their corresponding GitHub repositories. The main goal is
to obtain and analyze the developer’s feedback on the fixes
generated by our tool. No Version Pinning, noAptGetInstall-
Rec, and haveNoHealthcheck were the three smells detected
and repaired. However, we were able to make pull requests for
only noAptGetInstallRec. The reason is that, according to the
policies for creating official images, explicit HEALTHCHECK are
not added to the official image for several reasons, such as the
expectation that end users of the images will add them [21].
For Version Pinning, some package managers, such as apk,
only retain the latest package versions in their repositories.
Therefore, before each build of the Dockerfiles, the versions of
the installed packages need updating by this repair action (with
the database of the latest versions). In these cases, the Version
Pinning should be performed by the developers that build the
Docker images. From the 17 images that noAptGetInstallRec
smells were fixed by DOCKERCLEANER, we excluded two
images that the developers have already addressed the smells
in their latest versions of Dockerfiles. We further discarded
three images that the proposed fixes did not remove any

unnecessary packages. We then manually created twelve pull
requests in which we explained the smells and the fixes created
by our tool. As a result, we handed in 12 pull requests to the
developers. In cases of kong, tomee, and php-zendserver, we
extended the originally generated fixes to make the Dockerfiles
buildable by adding the missing packages.

Table VI shows the pull requests that we have sent. The
first two columns contain the image names and their total pull
counts on DockerHub. Most of the images have millions of
pulls as they are official images and are widely used. The
next two columns show the number of fixed smells and fixed
Dockerfiles, followed by the manual changes for the fixes if
needed. The last column indicates the status of the pull request,
which can be categorized in: Merged, Accepted, and Open.
Developers could review and accept the proposed fixes soon;
however, it might take time to merge the pull request due to
the policies of the contribution process in the projects. For
instance, we had to file an issue on the Jira system of solr
before we submitted the pull request to its repository. At the
time of writing, we have received developer responses for nine
pull requests. Nine pull requests were accepted, and eight of
those were further merged. There was no negative feedback
towards our proposed fixes. In several cases, the developers
even asked us to include the fixes for other Dockerfiles in
the repositories. We then ran DOCKERCLEANER to repair
them and updated the pull requests. Developers commented
on the pull requests that “That looks great, thanks for the
improvement!”, “I was expecting that one :-D Thanks for your
work.”, “Interesting... I hadn’t heard about this ... Thanks for
the contribution”, “Thank you for the PR ... I am fine with the
--no-install-reccomends as it makes sense to me.” Overall, the
results showed that the developers of official Docker images
were open to improvements in fixing security smells suggested
by our tool; they also accepted the pull requests and integrated
the suggested fixes into their Dockerfiles.



TABLE VI
THE PULL REQUESTS SUBMITTED TO THE PROJECTS OF DOCKER OFFICIAL
IMAGES. BASED ON THE PROPOSED FIXES BY DOCKERCLEANER IN DS1.

PC = Pull Count, #FS = #Fixed Smells, #FD = #Fixed Dockerfiles, Human
interv. = Human intervention was needed.

Official image PC #FS #FD Human interv. Status

backdrop 6.8M+ 1 1 Merged
couchbase 83M+ 1 1 Accepted
couchdb 179M+ 2 1 Open
hitch 363K+ 2 1 Merged
kong 308M+ 2 1 Add ca-certificates Open
mysql 3.6B+ 1 1 Open
php-zendserver 4.1M+ 2 1 Add ca-certificates,patch Merged
rethinkdb 73M+ 1 1 Merged
silverpeas 1.7M+ 2 1 Merged
solr 139M+ 2 2 Merged
tomee 21M+ 43 43 Add dirmngr Merged
varnish 13M+ 6 3 Merged

Total (12 pull requests) 65 57 8 Merged, 1 Accepted, 3 Open

Answers to RQ3: Twelve pull requests have been sent to the
developers of the official Docker images. Nine of them have
been approved, from which eight have been merged into
the Dockerfiles without receiving any negative feedback.
This proves that the developers have acknowledged the
effectiveness of the fixes provided by DOCKERCLEANER.

VII. THREATS TO VALIDITY

A threat to external validity is that the smells we selected
for our study may not represent all security-related smells in
Dockerfiles and thus may affect our study’s generalizability.
To mitigate this risk, we elected the smells based on the
best security practices in writing Dockerfiles that are synthe-
sized by the security experts. The chosen smells are well-
acknowledged by many scanning tools for security, showing
that they are prominent in practice. Additionally, the official
Dockerfiles we collected may not be representative of all the
Dockerfiles in general. We mitigated this risk by selecting only
the Dockerfiles that are non-trivial and span over multiple
applications. We also extracted large-scale Dockerfiles from
the Binnacle dataset to extensively evaluate our tool. Another
threat is that our injected dataset may not be realistic as the
real-world Dockerfiles. The evaluation showed that the trends
in repair results are similar between our synthetic dataset and
the real one (original Dockerfiles). Moreover, the verification
of smell presence in our study relies on the results of Hadolint
and KICS. We found several issues with the tools during our
study and reported them to their developers. To present the
current results in our paper, we used the newer versions of the
tools, which include the improvements based on our reports.
Still, we acknowledge a few limitations of Hadolint. Potential
threats to our internal validity refer to the errors in our
implementation and experiments. We have carefully examined
our implementation of DOCKERCLEANER and experiments to
mitigate these risks. Likewise, we reassessed the results of the
manual curation of smell-free Dockerfiles and the creation of
injected Dockerfiles with known smells.

VIII. RELATED WORK

Since its initial launch in 2013, Docker has become one
of the most prominent tools for virtualization over the years.
There have been a plethora of off-the-shelf tools developed
for assessing the quality and security of Dockerfiles, Docker
images, and Docker containers. As well as a growing number
of studies have been carried out to improve the maintainability
and security of projects using Docker.

Best practices and tools for Docker security. There exist
the best practices for better usage of Docker, such as CIS
Docker benchmark [11] and OWASP Docker Security Cheat
Sheet [12] that have been edited by the security experts. In its
latest version, v1.5.0, CIS Docker benchmark [11] contains
117 security recommendations which are systematically cate-
gorized into seven different groups of Docker configurations
and usages, including the creation of Dockerfiles. Many avail-
able scanning tools, including both open-source tools [2]–[4],
[22], [23], and commercial tools [24]–[27], can detect smells
and vulnerabilities in multiple levels of Docker’s artifact.
Several tools such as Dockle [22] and Docker Bench for
Security [4] support the checks based on the recommendations
in CIS Docker benchmark [11]. Recently, Docker develop-
ers have integrated their own security tool, namely Docker
Scout [28], to help search and fix vulnerabilities in the Docker
images. Regarding Dockerfile linting, Hadolint is the most
established tool and is widely used in practices and research
studies.

Detection and analysis of Dockerfile smells. Xu et al. [29]
proposed two detection techniques based on static and dy-
namic analyses to identify a type of smell they found in
Dockerfiles, namely “Temporary File Smell”. Henkel et al. [5]
introduced a static analysis tool, namely BIANNCLE, to contain
23 smell detection rules which they obtained from a frequent
sub-tree mining tool that they created. The evaluation on
6,334 Dockerfiles of Wu et al. [30] showed that smells are
very common and that co-occurrences exist between different
smells. Lin et al. [15] ran Hadolint on over 3.3 million Docker
images (98.38% of images hosted on DockerHub) and found
that the prevalence of smells in Dockerfiles causing larger
size for images is reducing over the years. By analyzing 9.4
million Dockerfiles from World of Code dataset, Eng et al. [14]
reconfirmed the previous studies about the downtrend of smell
prevalence in recent Dockerfiles.

Repair of Dockefile smells. The work of Durieux et al. [8],
which introduced a repair tool, namely PARFUM for Dockerfile
smells, is the closest to our work. PARFUM derived their fix
actions for general smells mostly based on the rules proposed
by Henkel et al. [5], while our work focused on developing
repair actions for security-related smells. There are four kinds
of security smells in our study that, according to its documen-
tation, PARFUM supports in detection and repair. Therefore,
we have included PARFUM in our evaluation, and the results
showed that our tool is superior to PARFUM in repairing se-
curity smells. Rosa et al. [9] proposed a preliminary approach
to fix the smells in Dockerfiles; however, the implemented



tool has not yet been available to be compared with our
tool. Zhang et al. [6] recommended the base images for
Dockerfiles by leveraging deep configuration comprehension
about the Dockerfiles via a neural network. SHIPWRIGHT, a
repair tool presented by Henkel et al. [31], targeted to the
repair of broken Dockerfiles. This tool employed 13 repair
rules which have been mined and curated from the build logs
of broken Dockerfiles. Hassan et al. [7] proposed a technique
to recommend the updates for the Dockefiles by performing
change impact analysis for environment-related code scopes.

IX. CONCLUSION

In this paper, we have presented DOCKERCLEANER, an
automated tool for repairing eleven types of security smells
in Dockerfiles. By leveraging the AST parser from Hadolint,
the most well-known linter for Dockerfiles, our tool can
efficiently parse the Dockerfiles and repair the existing smells.
We evaluated DOCKERCLEANER on a dataset of 910 synthetic
Dockerfiles with known smells. The repair results show that
the smells are fully addressed in 92.67% of these Dockerfiles,
and the proposed fixes only break 0.67% of the Dockerfile
builds. In the extended evaluation, we compared our tool
against the state-of-the-art repair technique on a dataset of
4794 large-scale Dockerfiles. Experiments show that DOCK-
ERCLEANER significantly outperforms the state-of-the-art tool
by 36.11% in terms of repair effectiveness. Regarding the
practical benefits of our tool, we found that the developers
highly acknowledge the proposed fixes of our tools for their
Dockerfiles.

In the future, we plan to improve the repair actions that
require more complicated fixes, such as “Have a HEALTHCHECK”
and “Use Version Pinning”. We also would like to extend our
tool to support more types of security smells in Dockerfiles
and other IaC platforms such as Terraform, Ansible, etc.
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